Large Scale Systems

Hervé Guéguen

Introduction

Problem To Do

Large Scale Systems

Chapter 5

Large Scale Systems

Order reduction

version 1.0

Hervé Guéguen CentraleSupélec herve.gueguen@centralesupelec.fr

Introduction

Objectives

- Understand the interest of model order reduction
- Apply model order reduction based on Balanced Realization

Hervé Guéguen

Introduction

Problem

Introduction

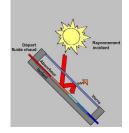
Objectives

- Understand the interest of model order reduction
- Apply model order reduction based on Balanced Realization

Work

- Consider an example
- Deliver a report

Large Scale Systems


Hervé Guéauen

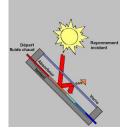
Introduction

Problem

Problem specification

Solar heating of water

Hervé Guéguen



Introduction

Problem

Problem specification

Solar heating of water

Modelling Asumptions

- The solar panel is considered as a pipe of length L,
- The solar irradiation is constant on the pipe,
- The water flow is constant and fixed.

Hervé Guéguen

Introduction

Problem

Modelling

Cell equations

$$\frac{dTw_{i}}{dt} = \frac{1}{m_{wi} \cdot Cp_{w}} (h_{CW} \cdot A_{CW} \cdot (Tc_{i} - Twi) + q \cdot Cp_{w}(Tw_{i-1} - Twi)) \quad (1)$$

$$\frac{dTc_{i}}{dt} = \frac{1}{m_{ci} \cdot Cp_{c}} (h_{CW} \cdot A_{CW} \cdot (Tw_{i} - Tci) + A_{cr} \cdot F_{abs} \cdot Rad + h_{CW} \cdot A_{CA} \cdot (Ta - Tc_{i})) \quad (2)$$

where

- w stands for water, c for copper and a for air, i is the number of the considered cell and i – 1 the previous one,
- *Cp_x* is the specific heat, *mx_i* the mass, *q* the water mass flow rate, *F_{abs}* is the absorbing factor of the pipe and *Rad* is the solar irradation
- *Tx_i* stands for the temperature, *A_{xy}* for the exchange area and *h_{xy}* the exchange coefficient.

Large Scale Systems

Hervé Guéguen

Introduction

Problen

Modelling

Considering N cells

$$\frac{X}{dt} = A \cdot X + B \cdot u$$

$$T_{out} = C \cdot X + D \cdot u$$
(3)

where

•
$$X = (Tw_N, Tc_N, Tw_{N-1}, ..., Tc_1)'$$

• *T_{out}* the ouput and *T_{in}* the input temperature of water.

Hervé Guéguen

Introduction

Problem

Modelling

Considering N cells

$$\frac{X}{dt} = A \cdot X + B \cdot u$$

$$T_{out} = C \cdot X + D \cdot u$$
(3)

where

•
$$X = (Tw_N, Tc_N, Tw_{N-1}, ..., Tc_1)'$$

• *T_{out}* the ouput and *T_{in}* the input temperature of water.

PanneauDyn Matlab function

- input: N the number of cells
- output: state space system associated to (3)

Hervé Guéguen

Son CentraleSupélec

Introduction

Problem

1 - Spatial discretization

Large Scale Systems

Hervé Guéguen

Introduction

Problem

To Do

Similarity of step response of the approximations will be used to assess them

- compute the spatial discretization of the system considering various numbers of cells ¹. The numbers should at least include: 1, 2, 5, 10, 100, 200, 300.
- compare the systems and propose a good value for the number of cells to be considered in the spatial discretization.

¹From now on, the system obtained with N cells will be denoted SN

2 - Hankel Singular Values

- give the definition of controlability and observability gramians of a system and a brief interpretation of these gramians. Compute the gramians for S2.
- 2 give the definition and interpretation of the balanced realization of a system. Compute the balanced realization ² of S2 and check its gramians.
- What are the Hankel Singular Values of a system and give the Hankel Singular Values of S2

Tips

Matlab functions: gram, balreal, hsvd

Large Scale Systems

Hervé Guéguen

S CentraleSupélec

Introduction

Problem

²The balanced realization of SN will be denoted SBN

3 - Balanced realization order reduction

- Explain the principle of model order reduction based on balanced realisation
- Consider the Hankel Singular Values of S200 and propose an order (n) that is relevant to reduce the order of the system.
- Compute the Balanced Realization Reduduction of S200 at order *n* (SR200.n).
- 4 Compare the systems S200, Sn and SR200.n.
- **5** Compare the systems S200 and SR200.(n/2).

Tips

Matlab functions : balred

Hervé Guéguen

Large Scale Systems

Introduction

Problem

4- Conclusion

Large Scale Systems

Hervé Guéguen

Introduction

Problem

To Do

Conclude on this study and propose other methods to reduce the order of models.